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Abstract

Many real-world investment portfolios have a value that is sensitive to both (i) changes in equity price
and (ii) risk of default. In some cases, notably convertible bonds, these sensitivities are present in a single
instrument. Primitive mixed-discounting approaches are unsatisfactory for both theoretical and practical
reasons, yet are common in existing open-source treatments. Elaborating on Andersen and Buffum (2004),
this technical report describes a useful stochastic model linking equity and debt, its translation to a grid
scheme for pricing various derivatives classes, and best practices for calibrating it.

Introduction

Financial derivatives generally fall into one of just a few classes: fixed income, equities, foreign exchange,
commodities, and energy. Pricing models for these derivatives usually involve standard approaches distinct
to each of these asset classes. For example, equity derivatives are priced on variants of the famous Black-
Scholes model, while tranche protection on mortgage-backed securities uses copulas with marginal Poisson
distributions. Convertible bonds are one of the few types of derivative securities straddling asset classes, and
whose valuation must be linked to reasonable models of multiple asset types, involving equity valuations,
fixed income and sometimes foreign exchange.

A convertible bond is similar to a corporate bond', promising coupons and notional payments at some
known set of future dates, but with a twist. The bond holder, who has effectively lent money to the issuer,
can choose to convert the bond into equity (subject to some restrictions), in a varying amount known as the
converston value. The bond value therefore depends on three major processes:

e equity value affecting conversion value
e default of the issuer wiping out equity, coupons and notional
o interest rates affecting the discounted value of future coupons and notional

Of these processes, the changes in equity value are most important, followed closely by issuer default?. We
discuss derivative pricing and calibration based on simply linked models of equities and corporate defaults.
Though convertible bonds are our most important case, we also consider mandatories, compound options,
and portfolios of equity options and credit derivatives on the same underlying company.

Stochastic Model

Our basic stochastic model® links equity values S; with hazard rate or default intensity h

dSy
St
1A standard corporate bond is often called a straight bond
20ne might wonder how a fixed-income security could be relatively insensitive to stochastic interest rates. Most convertibles
are issued in countries with stable economies, so the rates are generally far less variable and far smaller than the credit spreads

of the bond issuers.
3More explicitly we could write

=(r+h—q)dt+odZ—dJ

s

S, = (r(t) + h(St, t) — q(t))dt + o(t)dZ — dJ(h(St, t))



where r and ¢ play their usual roles, h is a deterministic function of stock price and time, and J is a Poisson
jump process (see Linetsky 2006; Andersen and Buffum 2004; and Wu and Carr 2006) adapted to the default
intensity or hazard rate h. This model is a jump-diffusion extension of Black-Scholes, with the jump process
J representing default, compensated (Merton 1976) by extra drift{*} in the equity at rate h.

In addition to these “normal” stochastic dynamics, we will assume that on a known future set of dividend
dates T}, the stock will pay dividends in the amount xi + 7 ST, , @ combination of fixed and proportional
values®.

As an important parsimonious example we may take the default intensity h to be given by a shifted power
law (Takahashi, Kobayashi, and Nakagawa 2001)

h(S,t) = he + a(t)SP

where «(+) is a deterministic function of time and the power p is a constant generally between -10 and -1. In
practice, the volatility o, borrow cost component of g and (less frequently) even the short rate r can often be
set to constants, though we do not make that assumption here.

Note that our stochastic model is nominally two-dimensional, but since the jump process is discrete we can
nearly always collapse analyses into a single dimension, at considerable computational savings.

Arguments of Intuition

A model is only useful in practice if we use it to tell us something about the world. In order to do so with
this model, we require some way of choosing its parameters.

Only some of our parameters are likely to be well-understood and readily specified by practitioners:

o The short rate r(t) can be inferred using the usual interest rate curve bootstrapping techniques.

e The hedge borrow cost® b(t) is typically set according to the rates negotiated with a prime broker’.

e Constant dividend amounts xj; and their companion proportional amounts 7 are nearly always set
from past dividends or from professional estimation services®.

o The overall negative drift ¢(t) is taken to be the sum of the borrow rate b(t), and a continuous dividend

stream d(t).

Our remaining model parameters are unobservable and require more careful consideration. Generally
speaking, we require some way of inferring them from observable current or historical market data familiar to
practitioners.

Survival Probabilities and Independent Default Intensity h

Equity default observations are almost infinitely sparser than equity price observations’. Default models
and specifications are correspondingly crude in comparison to Black-Scholes. We think of default intensity
(independent of stock price) as being based on a sequence {H;, T;} such that default time Ty satisfies

Prob(Ty > T;) = exp (—H;T;) .

4The extra compensatory drift can provide some surprising pricing effects when h is large.

5In most cases, corporate dividends are “sticky” and likely to be held constant over short time horizons. As time increases,
the amount is ever more uncertain, making proportional assignments more reasonable.

6By borrow cost we mean the spread between contractual funding rate (per an ISDA) and the rebate rate received on borrowed
shares. Rebate rates are set contractually with a prime broker, but can vary downwards, sometimes drastically, for names in
which short interest has become significant.

TWhile borrow costs are often ignored in the academic literature, they are a significant influence on the traded value of
derivatives in the financial markets.

8Bloomberg’s BDVD is one such professional dividend estimation service.

9Equity defaults are also significantly sparser than major corporate events such as takeovers, spin-offs and special dividends.
Modelers do not generally treat corporate events because their details and effects are a complete modeling quagmire.


https://developers.opengamma.com/quantitative-research/Pricing-and-Risk-Management-of-Credit-Default-Swaps-OpenGamma.pdf

Where possible, the H; are observed credit default swap (CDS) spreads. Taking T = 0 we then find a step
function h(t) with left-discontinuities at {7;} such that

HT, = h(T)(T; — Tj1)

j<i
The survival probability to any time ¢ is then given by the Poisson distribution function of

Prob(T,; > t) = exp ( /O t E(s)ds)

In most cases this is trivial, since only one spread observation {Hy, T} = 5yr} is available. When CDS spreads
are unavailable, it is common practice to approximate H with an historical average from a ratings agency
lookup table.

For shifted power laws we can match a wide variety of survival probability functions by choosing various
intensity modifiers «(t). A particularly important case is the constant-intensity target with rate h,.

Prob(Ty > t) = e "<t

This specification is compatible with a simple extension to the standard Black Scholes model and the
associated Black-Scholes formula for European-exercise options.

Stock Volatility o

We generally think of stock volatility in terms of equity option markets. For that reason, we expect to “imply”
an appropriate value for ¢™™P! from equity options where possible. However, it is important to keep in mind
that o'™P! is inevitably different from the default-free crgrépl in the Black-Scholes model. The two will be
closely related, but since some of the price variability is represented by the jump process dJ, we will have
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It is well-known that Ug’épl exhibits skew, in the sense that, empirically, its value is not constant across all

options of the same tenor, particularly as we vary the option strike. This can be interpreted as evidence that

the Black-Scholes stochastic model is “wrong”, which is of course quite reasonable from our point of view,
where we favor a different stochastic model.

Valeant Default—Free Volatility Skew
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If we price options of various strikes K in our model using a constant o, and then compute the corresponding

volatility skew curve of a]ignépl(K ), we can see how much of the empirical volatility skew can be explained by

equity-linked jump to default'’. To the extent the curves our similar, we regard our model as pricing all
derivatives in a manner logically consistent with empirical volatility skew.

10We do not argue here that equity-linked default intensity is truly the most important contributor to volatility skew. Skew at
short tenors is associated with other kinds of price jumps, and at long tenors is associated with stochastic volatility.
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Convertible bonds often have tenors far exceeding those found in liquid option markets. This makes historical
volatility estimates'!(Burghardt and Lane 1990) more desirable. Since historical prices are by definition

default-free, they are compatible with ¢ and not with ogg. This property of historical volatility estimation
for risky entities is generally under-appreciated.

Fundamental Derivative Properties

Early Exercise

Some instruments of interest, such as CDS and vanilla options, are amenable to valuation by directly
estimating and discounting terminal distributions. However, both convertible bonds and american-exercise
equity options give early exercise rights to their holders. In addition, corporate bonds (including converts)

often have embedded call options, granting exercise decisions to the issuer. Embedded put options also appear
with some frequency.

Note that exercise of a call option is often accompanied by coupon acceleration according to a contractually
determined rate curve. This feature is trivial to handle as part of the exercise condition in a model. Call
options may also be provisional'?, being exercisable only when the historical stock price path has met certain
criteria. This latter condition is substantially more difficult to treat.

Pricing derivatives in the presence of these exercise rights requires dynamic programming in order to solve
the corresponding optimal stopping-time problem. This is best performed by forming the companion partial
differential equation (PDE), and solving the PDE by discretization methods as presented below.

sH

gH
HHistorical volatility estimates are usually formed by computing the standard deviation of log (
i—1

) for a time series of
historical prices SH.
12Provisional calls are also known as conditional calls or soft calls.



Tenor T

All the derivatives we contemplate here have a tenor or termination date, on which the derivative value will
be know exactly. For options and CDS, this is the contract expiration date. For straight and convertible
bonds, it is the effective maturity date'®.

Recovery Value §

In default, equity holders usually receive a negligible award after court proceedings. However, debt holders
often receive substantial payments, whose anticipated size must affect our view of the present value of that
debt and any derivatives on it (such as CDS). Therefore, we specify a function 4, typically a constant, to
represent post-default value. As with historical defaults, historical observations of § are distressingly rare, so
it is usually chosen according to some long-term average.

Representation As A Partial Differential Equation

Recalling that short rate r(t), holding cost ¢(¢) and volatility o(¢) are deterministic, we can apply the usual
arguments (Karatzas and Shreve 1991, Andersen and Buffum (2004)) and the Feynman-Kac theorem to our
SDE to obtain a PDE satisfied by any derivative of S that lacks cashflows

% AV 1 45,0V
5 —rV+h(5—V)+(r—q+h)SaS+2aS 852—0.

This backward parabolic PDE is amenable to numerical integration, which we specify in the final section
below. For now, let us take it as given that for any derivative with known boundary conditions we are able to

form solutions vém) on a grid of times t(™ ,m =0,..., M and stock prices S,,,n = —N, ..., N. The present

value of our derivative is represented by the entry v(()M).

Boundary Conditions

As discussed above, every derivative provides us with terminal values at expiration or maturity date. This
provides us with a vector of values 7(9) to use as an initial boundary condition. For boundary conditions at
the edge of our solution space, where S — 0 or S — oo we have a choice of boundary conditions, some wiser
than others.

Coupons and Dividends

In practice, both bond prices and stock prices are expected to exhibit discontinuities. Bonds yield occasional
cashflows in the form of coupons. In order to preserve continuity of value across coupon dates, we simply
assume that coupons remain part of the contract, accumulating value at the short rate r and enjoying full
recovery in case of default.

Stock dividends are somewhat trickier to handle. Derivative prices should not themselves jump across the
expected discontinuity in stock price from time T, just before the dividend to time T;‘ just after it. We
need to adjust the grid’s relationship between underlying prices and derivative price accordingly, so we use
the classic technique of rebasing the grid(Tavella and Randall 2000). That is to say, we take an interpolation

function Z and set
1% (§,Td—) :I(§— v —nS: §.V (§,Td+)) .

13Bonds have an official maturity date that, for tax reasons, is sometimes made irrelevant to bond structure by including calls
and puts guaranteed to be exercised by either the issuer or the holder. We also use the term effective maturity date to describe
upcoming dates when a call or put is considered so certain that modeling is moot, or when a takeover has been announced.



Dividend Protection

Dividend protection terms alter the conversion ratio in proportion to dividend sizes exceeding some contractual
mechanism, and are fairly common. It is easy to demonstrate that dividend protected bonds can be priced
accurately using our usual approach, with dividends respecified never to exceed the protection level. Note
however, that this trick would affect all securities priced on the grid, even ones without dividend protection,
so we must be sure to restrict our application of the ceiling only to protected instruments.

Full Calibration

We are now ready to discuss the entire calibration-and-pricing cycle.

Dividends, Rates And Borrow Costs

As discussed above, we use exogenous information sources to decide on these rates. It is worth noting that
we can attain extra computational efficiency at negligible cost by assuming dividends eventually take on the
form of a continuous yield rather than discrete payments, say after 3 years.

Volatility

If we are using option prices to estimate volatility, a reasonable approach is to begin with a degenerate version
of our model in which h = h is a function only of time. Given an at-the-money option of sufficiently long
maturity, we then use a root-finder and our PDE solver to estimate o.

Local Default Intensity

Begin by choosing a reasonable simple functional form for local hazard rates h(S,t) with one free parameter
p(t). Take a grid T(™ of future times for we wish to find parameter values p("™). Zero coupon bonds at these
maturities have prices

p(m)
Z(T™) = B(0,T™) exp (—/ B(s)ds>.
0

Assume we have already worked out (9 for all £ < m. Then (again using a root-finder) we choose p(™) such
that our PDE properly prices Z(T(™).

Pricing

We have now fully specified all parameters of our SDE, and are therefore ready to use the PDE solver to find
prices and hedge ratios of portfolios of various derivative securities, including convertible bonds CDS, options
and so on.



Convertible Bond Value, Equity—Linked Default Model
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Though mathematically we express our pricing algorithm in terms of grid values for a single security, in
practice we configure our grid so as to price multiple instruments simultaneously. This saves some time on
some of the computations common to all of the instruments, for example calibration of the local default
intensity parameter p™™, while also providing simultaneous access to all the instrument prices.

Contract Differencing

Similarly to the way in which control variates are use to improve the constant factor in Monte Carlo estimation
error, we can use contract differencing to improve price accuracy for options priced on grids. Consider, for
example, pricing an American option and its European equivalent on the grid, obtaining present values
V4 and Vg. We also enjoy a closed-form variation of the Black-Scholes formula BS() for pricing European
options, so we know the magnitude and direction of error our grid made for the European option to be

EI‘I“E = BS(E, .. ) - VE
Assuming Errs ~ Errg we can then form a newer, more accurate estimate of American option value as

VA =Vy — Errg

Exotics

Layers also provide us the ability to price certain exotics, including weakly path-dependent options and
compound options. Though the latter only rarely arise as equity exotics, they occur rather frequently as
“greenshoe” or over-allotment options in the terms and conditions of convertible bond issues.



To price a greenshoe, we simply use one layer for the bond itself, and then compute greenshoe value by
assuming exercise into the convertible at the greenshoe tenor, when advantageous.

Solving The PDE
Change of Variables

For greater stability and superior computational tractability, we change variables
T=T-—1
z=log(S/K)—(r—q—

q— 07T
flz,7) = eV (S(2), (7))

N | =

using an arbitrary constant K on a scale roughly similar to stock price S (often either a contracted strike or
the current stock price Sp).

Here the bar operator indicates time averages, as in

1 t(r)
T = 7/ r(s)ds
0

t

1 [t
2 = f/ o?(s)ds.
t Jo

and

This transforms our PDE into the more tractable equivalent

2
g+hg+ 10—2ﬂ —
022

or 0z ' 2 0-

We elect to enforce Neumann boundary conditions, so we take

o*f

Jim =5 =0

Note that the Neumann boundary conditions would be more or less exact at high-S boundaries for a solver
operating in S space. For our solver operating in z space, the Neumann boundary conditions lack the
(exponential) curvature. Nevertheless for grids of reasonable size they work very well.

Finite Differencing the PDE

Assume we have fm‘l, a set of solutions to the PDE for some 7 = (m — 1)dt at a given set of grid points
Zn = 29 +ndz,n=—N,...,N. For convenience we may write this in alternate forms

fm_l = f({zn} s Tm—1) = f(Z, Tm-1)

We wish to find approximate values for fm. Assume for now we are not subject to exercise boundaries or
cashflows. An implicit finite difference approximation to our PDE will then provide f™ as the solution to the
linear set of equations

fm—lchm®ﬁ

for some matrix C, where p'is the vector of survival probabilities

Pn = exp (—h(Sn, Tm)dt) .



and ® indicates the Hadamard product.

Our Neumann boundary conditions ensure C' is tridiagonal. Except at boundaries, its diagonal elements take
the form

dt
Cnn=1+0 2@a
the superdiagonal elements are
1 “h dt 5 dt
Cn—1n = 3 - — 0 ——= |,
L 2 dz dz?

and the subdiagonals are
oL (pdt o dt
el T g dz dz2 )"

At the boundaries, we can ignore the second derivative but the convection terms remain, yielding

dt
CENAN = h@

and
dt
C_N,—N+1 = CN—1,N = —h—.
dz

Having found all these elements, we can obtain our updated grid values using the tridiagonal algorithm.

Exercise Boundaries

When put and/or call conditions are active, we need to know their exercise boundaries, i.e. stock prices and
associated derivative values above or below which exercise is optimal for the option holder. This issue of
determining the exercise boundary by dynamic programming is indeed the reason we are using a grid in the
first place.

Say exercise values are known on the grid to be €7 = €(S,,, t(r(™)). In theory, we should be solving the
linear complementarity problem

(- Fro) (7o)

using Gauss-Siedel or policy iteration.

In practice, however, we introduce negligible errors by simply assuming the exercise barrier can be determined
directly from €™ and C~' - fm~! @ p~!, defining our timestep solution as the element-wise maximum

—

fm:max(ém, Cil'fm*@ﬁkl).

Choosing Grid Parameters

Our implicit scheme has truncation errors leading to estimation errors of size O(dt) + O(dz?). It is uncondi-
tionally stable(Smith 1986), but in practice begins to perform poorly when convection terms become large
compared to the diagonal, which is to say when

dt 5 dt

h— ~1
dz to dz?

or when dominance of the diagonal grows weak

dt

2

—_— 1.
o q22 >

10
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For practical reasons, we want to fully specify our grid without being terribly concerned about the functional
form of these constraints. We choose a grid width w in terms of standard deviations of S, usually about 2 or
3, and a structure constant y = dthQ between i and 4, and then typically leave these parameters alone.

This leaves us with just one free parameter, namely the timestep count M. From this parameter we easily
extract dt and dz from the structure constant y and the relation dt = T/M. Though we can’t quite form a
closed-form estimate of the w-standard-deviation increase in stock price, we can reasonably estimate it with

S hT wo
Smax = be(w) (ST) = Wot)eh,re ﬁ

Using our change of variable above we can then find zmax = 2 (Smax) and then divide by dz to find N.

Anchoring Timesteps

Coupons, put dates, call dates and dividends occur on dates known in advance. These are sufficiently sparse
that it is easier to force “extra” timesteps into our 7(") grid than it is to discount them to timestep boundaries
in a manner consistent with the rest of the model. Once we have set our dividend date at a timestep boundary,
we deal with dividends on the grid using the interpolation scheme described above.

Calibration

Although in principle we could guess at a reasonable form for equity-linked default intensity, it makes more
sense to allow the derivatives markets themselves to give us a hint. In particular, at any given time there are
several hundred actively quoted options on TSLA. We take a snapshot of these, along with a risk-free yield
curve, and attempt to calibrate our model.

Fitting Continuous Process Volatilities

To begin with, we probably want our model to provide a very tight match to at-the-money (ATM) volatilities.
Let’s say we have decided that we must precisely replicate K such volatilities, or equivalently the prices of K
options O,k =1,..., K, in order of (strictly increasing) tenor Tj. Assume we have chosen a default intensity
function h(S,t). We can set the volatility o(t) of our continuous process to be constant o1 from time zero to
Ty by applying a root-finder to the pricing algorithm.

Once we have established continuous process volatilities to tenor T}, we can extend to Ty41 by applying the
root finder to the pricing algorithm versus the constant volatility o1 between Ty and Ty11. Overall, we
are able to bootstrap our way into a full variance accumulation function for the continuous process whose
associated volatilities are piecewise constant.

Fitting Linked Default Intensity

Now let us choose a functional form for the default intensity function h(S,t), with M parameters p,, m =
1,...,M. We run a nonlinear optimizer on them, with an objective function that first fits the variance
accumulation function for the continuous process given our particular choice of the ., and then prices all
the available market options via our pricing algorithm. Once we have those prices, it is a simple matter to
construct a weighted average pricing error as our objective function value.

For best stability and fit quality, it is best to volatility space. That is, we convert every price our algorithm
generates into a straight Black-Scholes implied volatility. This helps the optimization algorithm deal with
what would otherwise be tricky variations of scale in the objective function components. Note that the
conversion to Black-Scholes volatilities is, for these purposes, simply an anonymous nonlinear transform of
the prices into a space more amenable to fitting.

11



Calibration Results

Our optimizer yields a set of parameters with the best available weighted average price error, along with a
variance cumulation function that precisely replicates the ATM volatilities. We can then use it for analyzing
other instruments, or for finding interesting apparent anomalies in the set of options used for calibration.

Example

Consider the problem of pricing a convertible bond de novo. For concreteness, we take the case of Tesla
Motor (TSLA), which issued a 0.25% bond expiring in 2019, and assume we would like to price it. We have a
set of option prices, including

callput K  time mid bid ask spread
226 1 140 0.127 101.775 100.05 103.50 3.45
346 -1 300 0.127 61.200 60.00 62.40 2.40
446 1 360 0.376 1.745 1.57 1.92 0.35
563 1 185 0.625  64.750  63.80  65.70 1.90
663 -1 440 0.625 205.225 203.45 207.00 3.55
867 -1 55 1.718 2.635 2.38 2.89 0.51

Running a crude optimization algorithm yields a term structure of continuous process volatilities

tenor volatility

0.127 0.476
0.376 0.446
0.625 0.441
0.721 0.430
1.718 0.413

along with a default intensity function

S 1.02
h(S;,t) = 0.05 (0.077 +(1-0.077) (5) )

We can then price our convertible bond, finding that it has present value 94.87 percent of par, which is
remarkably close to the contemporaneous market quotes.

Performance

Analyzing performance of our basic PDE solver in simple cases shows that convergence is slightly superlinear
in timestep size for the simplest default intensity processes

12



Polynomial Convergence In Step Size
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Grid width is also important for most securities. Here, the simple case boasts superlinear convergence in
width due to the narrow tails of the gaussian distribution.

Convergence In Grid Width
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In the case of more complex equity-linked default, and a coupon-bearing convertible bond, we observe relative
errors about twice as large, though we still enjoy superlinear convergence.

13



Convertible Bond, Equity—Linked Default
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These are fairly typical convergence rates for derivatives grid pricing schemes.
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